13 research outputs found

    A Proof-Theoretic Approach to Scope Ambiguity in Compositional Vector Space Models

    Full text link
    We investigate the extent to which compositional vector space models can be used to account for scope ambiguity in quantified sentences (of the form "Every man loves some woman"). Such sentences containing two quantifiers introduce two readings, a direct scope reading and an inverse scope reading. This ambiguity has been treated in a vector space model using bialgebras by (Hedges and Sadrzadeh, 2016) and (Sadrzadeh, 2016), though without an explanation of the mechanism by which the ambiguity arises. We combine a polarised focussed sequent calculus for the non-associative Lambek calculus NL, as described in (Moortgat and Moot, 2011), with the vector based approach to quantifier scope ambiguity. In particular, we establish a procedure for obtaining a vector space model for quantifier scope ambiguity in a derivational way.Comment: This is a preprint of a paper to appear in: Journal of Language Modelling, 201

    Lexical and Derivational Meaning in Vector-Based Models of Relativisation

    Full text link
    Sadrzadeh et al (2013) present a compositional distributional analysis of relative clauses in English in terms of the Frobenius algebraic structure of finite dimensional vector spaces. The analysis relies on distinct type assignments and lexical recipes for subject vs object relativisation. The situation for Dutch is different: because of the verb final nature of Dutch, relative clauses are ambiguous between a subject vs object relativisation reading. Using an extended version of Lambek calculus, we present a compositional distributional framework that accounts for this derivational ambiguity, and that allows us to give a single meaning recipe for the relative pronoun reconciling the Frobenius semantics with the demands of Dutch derivational syntax.Comment: 10 page version to appear in Proceedings Amsterdam Colloquium, updated with appendi

    A Frobenius Algebraic Analysis for Parasitic Gaps

    Get PDF
    The interpretation of parasitic gaps is an ostensible case of non-linearity in natural language composition. Existing categorial analyses, both in the typelogical and in the combinatory traditions, rely on explicit forms of syntactic copying. We identify two types of parasitic gapping where the duplication of semantic content can be confined to the lexicon. Parasitic gaps in adjuncts are analysed as forms of generalized coordination with a polymorphic type schema for the head of the adjunct phrase. For parasitic gaps affecting arguments of the same predicate, the polymorphism is associated with the lexical item that introduces the primary gap. Our analysis is formulated in terms of Lambek calculus extended with structural control modalities. A compositional translation relates syntactic types and derivations to the interpreting compact closed category of finite dimensional vector spaces and linear maps with Frobenius algebras over it. When interpreted over the necessary semantic spaces, the Frobenius algebras provide the tools to model the proposed instances of lexical polymorphism.Comment: SemSpace 2019, to appear in Journal of Applied Logic

    Structural Ambiguity and its Disambiguation in Language Model Based Parsers: the Case of Dutch Clause Relativization

    Full text link
    This paper addresses structural ambiguity in Dutch relative clauses. By investigating the task of disambiguation by grounding, we study how the presence of a prior sentence can resolve relative clause ambiguities. We apply this method to two parsing architectures in an attempt to demystify the parsing and language model components of two present-day neural parsers. Results show that a neurosymbolic parser, based on proof nets, is more open to data bias correction than an approach based on universal dependencies, although both setups suffer from a comparable initial data bias

    A Compositional Vector Space Model of Ellipsis and Anaphora.

    Get PDF
    PhD ThesisThis thesis discusses research in compositional distributional semantics: if words are defined by their use in language and represented as high-dimensional vectors reflecting their co-occurrence behaviour in textual corpora, how should words be composed to produce a similar numerical representation for sentences, paragraphs and documents? Neural methods learn a task-dependent composition by generalising over large datasets, whereas type-driven approaches stipulate that composition is given by a functional view on words, leaving open the question of what those functions should do, concretely. We take on the type-driven approach to compositional distributional semantics and focus on the categorical framework of Coecke, Grefenstette, and Sadrzadeh [CGS13], which models composition as an interpretation of syntactic structures as linear maps on vector spaces using the language of category theory, as well as the two-step approach of Muskens and Sadrzadeh [MS16], where syntactic structures map to lambda logical forms that are instantiated by a concrete composition model. We develop the theory behind these approaches to cover phenomena not dealt with in previous work, evaluate the models in sentence-level tasks, and implement a tensor learning method that generalises to arbitrary sentences. This thesis reports three main contributions. The first, theoretical in nature, discusses the ability of categorical and lambda-based models of compositional distributional semantics to model ellipsis, anaphora, and parasitic gaps; phenomena that challenge the linearity of previous compositional models. Secondly, we perform an evaluation study on verb phrase ellipsis where we introduce three novel sentence evaluation datasets and compare algebraic, neural, and tensor-based composition models to show that models that resolve ellipsis achieve higher correlation with humans. Finally, we generalise the skipgram model [Mik+13] to a tensor-based setting and implement it for transitive verbs, showing that neural methods to learn tensor representations for words can outperform previous tensor-based methods on compositional tasks

    Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality

    Get PDF
    We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors

    Discontinuous Constituency and BERT: A Case Study of Dutch

    Get PDF
    In this paper, we set out to quantify the syntactic capacity of BERT in the evaluation regime of non-context free patterns, as occurring in Dutch. We devise a test suite based on a mildly context-sensitive formalism, from which we derive grammars that capture the linguistic phenomena of control verb nesting and verb raising. The grammars, paired with a small lexicon, provide us with a large collection of naturalistic utterances, annotated with verb-subject pairings, that serve as the evaluation test bed for an attention-based span selection probe. Our results, backed by extensive analysis, suggest that the models investigated fail in the implicit acquisition of the dependencies examined

    Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality (Extended Abstract)

    Get PDF
    We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality, which has a limited version of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality as defined on Differential Categories. We instantiate this category to finite dimensional vector spaces and linear maps via quantisation functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of this extended calculus: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensorsComment: In Proceedings ACT 2020, arXiv:2101.07888. arXiv admin note: substantial text overlap with arXiv:2005.0307
    corecore